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Variance of Load Estimates Derived by

Piece-wise Linear Interpolation

George Shih', Xiaosong Wang,? H.J. Grimshaw,® and Joel VanArman®

Abzstract: Piece-wise linear interpolation (PLI) is frequently used
in environmental studies to estimate missing data. However, to
evaluate the reliability of these estimates, the variances of these
interpeolated values must be quantified.

We propose a procedure to guantify this PLI variance which
involves establishing a semi-variogram with ccoefficients that are
~alibrated using a cross-validation technicque. Estimated values are
written as a linear combination of neighboring data points and the
varjiance 1z calculated with the help of the wvariogram. Such
interpolated values are unaffected by the variance quantification
procedure,

Wa then use the PLI model to calculate the wvariance of a

vearly nutrient load under the assumption that only the nutrient
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concentrations contained missing valuesz. When these results were
compared with thosge from an arithmetic-mean, a flow-weighted mean,
and a linear regresslion model, the PLI model was found to be
comparable to the other three models in terms of variance.
Selection of an appropriate model depends on the
characteristics of the data set. Knowing the variance of estimated
loads can help regulatory agencies make Dbetter decisions to
determine whether water quality in the environment is in compliance

with eztablished standards or criteria.

INTRODUCTION

Development of rules and regulations to protect environmental
resources and monitoring of those resources to evaluate compliance,
often require determinations of nutrient loadings. Loading 1is
calculated a= the product of discharge and concentration. When
concentration and discharge measurements are “complete" and
"accurate", loading calculations are straightforward and
"accurate". In reality, however, concentration and discharge
measurements involve errors and data are often missing.
Consequently, all nutrient loadings are approximations of the true
loadsz, with uncertainty resulting from the estimation of missing
values. vVaricuz models can be used to estimate missing data. To
evaluate data that are collected as part of a regulatory program,
we believe that all loading models should include some means of
quantifying the degree of uncertainty azsocilated with the results.

Many studies have been conducted during the last two decades
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to improve the accuracy of nutrient loading estimates. Based upon
a comparizon of gome commonly used load calculation methods and
their relative errors, Scheider &t al. (1978) recommernded the use
of measured concentrations as the midpeoints for estimating
phosphorus concentrations in individual time intervals. Cohn et
al. (1289) compared the biases and wvariances of three log-linear
regression models and recommended a minimum  unbia=zsed  load
estimator. Stack and Belt (1989) reported that large differences
in pollutant leoads could result from selection of different flow
averaging periods.

Fregton et al. (1928%) evaluated three broad classes of
tributary loading estimation methods: simple averaging, ratio
egtimation, and regression. They found that none o0f the=ze
estimators was superior to the others for the tested cases.
Preston et al. (1992) reported that Beale's ratioc estimator was the
only method that provided unbiased estimates for both stable and
responsive systems, although stratification was necessary under
event sampling. By separating precision from accuracy, Bekolainen
et al. (1929]1) concluded that load calculation methods based on
summing the products of regularly sampled flows and concentrations
resulted in the highest precision, whereas the best accuracy was
achieved using methods based on multiplying annual flow by the
flow-weighted annual mean concentration. In an attempt to use a
lesz expensive time-composite sampling method for regqulatory
purposes, Shih et al. (1294} discussed the bias and accuracy of

this method and the covariances that occur between discharge



volumes and concentrationsg.
Mozt of these previous studies have agsumed that complete data
zets were available (all data necessary to obtain an error-free

reference) and uged sub-sampling methods to numerically infer their

results. In practice, however, complete data sets are rarely
available, and various methods, such as plece-wise linear
interpolation (PLI), are used to estimate missing data.

PLI iz a simple procedure. Two neighboring known data points
are connected with a straight line, and estimated values between
these known points are read off the line. Due to the
deterministic nature of PLI, uncertainties of estimated values are
often ignored. In this paper, we develop a model to quantify the
uncertainty of values obtained by PLI.

There are two basic approaches for estimating missing data:
(1) interpolation, of which PLI is the simplest method, and (2)
regresgion, where linear regression (LR) iz the simplest model.
Given N data points, PLI defines N-1 straight line equations, each
line connecting the two nearest-neighboring points. LR defines
only one straight line equation with over-determined data points.
We focus our model development on PLI, but numerical examples of
various models are pregented for comparison.

In applying the models for load calculations, we assume that
(1) the available flow and concentration data are error-free (data
errors are not considered); (2) that only concentration
measurements have missing values, so that PLI and other estimation

models are applied to concentration data only; and (3) that all



concentration data were obtained from {instantaneous) grab samples.

METHODS
Definitions

Let 1, be the lecad in a given time period, dt; t; be the
midpoint of thisz period; and C(t) and Q(t) be the concentration
graph and discharge hydrograph, respectiwvely. Then,

ti+dt/2 ‘
1 = [¢-ge/aCitr0it) At (1)

When dt is sufficiently small, C(t) for the ith period can be

approximated by a constant C;. Thus,

£ ~dt/2
1, =c, fc1+dt/zmt)dt - c,v, (2)

where V; 1is the integrated discharge velume 1in the ith time
interval. If the time interval, dt, 1s one day, then C, and V, in
Equation (2) can be viewed asz their daily averages and 1, is the
daily load for the day t;. For a given time period the total load,

L, can be obtained by summing the daily loads as follows:

where N i1s the total number of days in the given time pericd. When
daily ¢; and V, data are "complete" and "accurate" for the period,

the summation in Equation (3) iz satraightforward. “Complete" means



that there are no missing data for the entire period, whereas
"accurate" means that the data are unique and are not subject to
any sampling or analytical errors. If either of the these
conditicns is not met, Egquation (3) will incur uncertainty.
Concentration and flow measurements are usually acquired
independently. For an accurate but incomplete data set with
missing values, uncertainty in the load calculation only occurs due
to the estimation of missing valuss. If n is the number of missing
data and K is the number of days when concentration data are

available, then Egquation (3) can be rewritten as:
L=f:[ci]vi +f:ckvk (4)

where [C,] is the estimated wvalue of the missing concentraticn for
day i, and n + K iz the total number of days in the calculation
periad. The first term on the right-hand side of Eguation ({4)
includes all estimated concentrations while the second term
includes only known values. Therefore, the uncertainty of L only

comes from the first term.

Models

Before develeping the PLI model, some other established
models that are commonly used in nutrient load calculations should
be examined. Arithmetic mean (AM), flow-weighted mean (FM) and
linear regression (LR) models all have established uncertainty

analvysis procedures .



A. Models that do not £ill in missing data

If missing and available data are from the same population,
the mean and the variance of this populétion can be egtimated from
the available data without estimating individual missing values.
Thus, the load for a given period is the sum of the productz of the
daily discharge wvolume and the mean concentration during that
period. AM and FM models are in this category. Thesze means and
variances can be calculated by following procedures in Snedecor and
Cochran (1980, pp27-30). The difference between 2M and FM is that,
for AM, the frequency of each sample is one; for FM, the frequency
ig proportional to the flow volume at the time that the sample is
takernn. Since we are considering that only the concentration (8V)

has uncertainty, these models are denoted as SVAM and SVFM.

B. Models that f£ill in missing data

Although the SVAM model and the SVFM model are sasy to use and
often give satisfactory results, differences between the sample and
population means can be significant, especially when the sample
size iz =zmall. On the other hand, nutrient concentration is often
related to other hydrologic parameters such as discharge volume and
rainfall. These relationships, which are not used in the &AM and FM
models, can be uszed to provide better estimates of missing
concentrations and to reduce uncertainties. Linear Regression (LR)
iz cne of the simplest of such models. A simple regression model
can be established using daily data, such as discharges, as thea

independent variable., With a complete set of daily discharge data,



sach misszing daily concentraticon can then be estimated by the
regression ecuation. Draper and Smith (1981, pp86-87) provide a
clear treatment of how to establish such a2 model. To find the
variance of the load estimated as the product of a flow-volume and
the concentration, however, one must consider the variance-
covariance of multiplying two correlated random variables. We
followed Kendall and Stuart (1977, pp261-262) to calculate the
variance of the estimated load denoted herein as the SVLR (single-
variable linear regression) model.

The PLI model, when established, alse belongs to this
categqory. One can use time or distance as the independent variable
in PLI, to reduce the covariance problem in further mathematical

operaticns.

Piece-wise linear interpolation (PLI) model

Due to its simplicity, linear interpolation from two adjacent
known points is widely used to estimate missing data. Since it is
defined by a deterministic eguation, uncertainty is often ignored.
To our knowledge, no other procedures have been established to
quantify the variance of PLI. Without =uch a +variance
gquantification procedure, PLI iz s=imply a protocol and is not
comparable to other models that provide gquantitative wvariance
analysis. Because some regqulatory agencies have adopted PLI as
Fheir standard in nutrient lecad calculations, it iz imperative that
a variance analysis procedure be developed for this method.

Given a set of data (y,., t,.) for k=1, 2, ..., K, where y, i3z an



independently measured walue of a random wvariable Y at some
abscissa t, such az time, a missing value z; at t; where t, < £, <
£y, may ke estimated based on the two adjacent known points y, and

Ve Q=2ing the following linear interpolation equation:

Z, =V v (Ve — ¥y

(Epy — B

kel k

The wvariable Y iz agasumed to be ztationary for the firgt two
moments. It can be seen that when t; = t,, then z, = v,; similarly,
when t. = t,,, then =z, = v, . OQur question is, what is the
uncertainty or wvariance of the estimated z,? This uncertainty
regults from the inability of Equation (5) to predict the true
value of z;, not from the measurement errors of y, and y...
Egquation (5) can be rewritten into a linear combination form as

follows:

Z, =W ;Y. * Wz,_f Y (6)
W, = S X AlA (7)
' (St = 1 T A,
W = tk+1_tl = Az (8)
1, -
i tery by A +4,

where W, ; and W,,; are the weight factors of v, and v,
respectively. It is clear from equations (7) and (8) that W, . and

W, : satisfy the following constraint of unbiasedness:
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W, o+ W, =1, (9)

Therefore, the weightsz are determined when the t; i1s known.
Equation {(6) can be expanded to include linear combinations of
three or more known data points.

To evaluate the variance of z, and thus the wvariance of the
calculated load, we have uzed a modified version of the kriging
proceszgs as follows:

(1) An appropriate theoretical semi-variogram (Skrivan and
Karlinger, 1980) is selected which is a function of the
variable A.

(2} The selected theoretical semi-variogram is calibrated by
crosz-validation (Hjorth, 1994, pp 24-57) under the constraint
that the variance produced with the semi-variogram agrees with
the variance produced by linear interpolation of the K known
points. In this step, a two-point kriging procedure (Journel,
1989) 1z followed to determine the variances of the estimates.
Steps (1) and (2) are repeated until a satisfactory semi-
variogram is obtained.

(3} vVariance of the load iz calculated using the calibrated
theoretical semi-wvariogram.

For example, we can select an exponential function asz the

theoretical semi-iariogram in step (1):
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A (10)
Y(A) =w(1 -¢e %) +c, A >0
where w, «, and ¢ are coefficients to be ralibrated. The maximum
of the above functieon iz the =111 (w+c, when A — es), The

parameter ¢ is called the '"nugget effect" that creates a jump of
uncertainty if not exactly at the measzured data point. Step (2) is
to calibrate the three ceefficients by crosms—walidation. In thia
process, the inner (E-2} known pointsz, v, (k=2, 3, ..., K-1), are

firsat egstimated one at a time using Eguation (6) as follows:
B =W (Ve ¥ Wy Vi (11)

whare 2, is the estimate of y,. Non-neighboring points can also be
used as long as their weights are correctly calculated. In most
cases, howewver, it is degirable that the selected semi-variogram be
valid for small A's. Therefore, it iz advantageous to u=ze the
nearest polnts in Equationn (11). The zum of the squared cross-

validation error is calculated using the following equation:

The variance 1is:

2 (13)

Equation (13) is comparable to variances of other models when the
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variances are defined asg the average of the sum of squared
differences between observed and predicted errors. Eguations (12)
and (13) are immediately krown for a given data set after the
welights are defined. The sum of squared errors in Equation (12) is
uzed as the constraint to calibrate the coefficients in the
theoretical semi-variogram.

Let y(w,¢,c;A) be the semi-variogram in Egquation (10} . The
constraint in step (2) regquires that the sum of variance produced
with the thegretical semi-variogram agrees with egquation (12). We
now express the residual of the estimate 2, in terms of the semi-

variogram, From Eguation (11):

esz =1 Y ~ [“ﬁ.kyk-1+WE,kYk+1] ¥? {14)

Expanding Eguation (14) and considering W, , + W, , = 1,

(¥ ¥er)? S (Vg Vyur)
r i Lkl ¥ Yea! k-1 Tk+ 15
e zk_zwl.k 2 +2wz.k 2 zwl,sz,.k 2 (1)

Based on the semi-variogram,

y(A) = %Var[(yk = Vel = %(yk -~ Vo) (16)

Therefore, the expected wvalues of the squared differences in
Equation (15) can be approximated by the theoretical semi-variogram
v(A) az the following:

sz,, = zwl'k'f(Al'k) + ?.Wz,k'f(Az'k) - Ewl.sz,kY(Ai,k+Az,k) (17)



Equation (17) is the wvariance produced with the semi-variogram.

The imposed constraint becomes:

Ye:-s, (18)

The c¢eoefficients, w, o, and ¢, for the theoretical
semi-variogram Y(w,®,c;A) are calibrated to satisfy Equation {(18).
A two-point kriging procedure is followed to derive a set of raw
semi-variance data at selected intervals from a given data set.
The theoretical semi-variogram iz fitted to this data set by least
sguareg to obtain the initial wvalues of the coefficients, w,, ,,
and c,. The initial values are then adju=ted =o that Equation (18)
iy satisfied. Another constraint usged in the ¢ross-validation is
that the =5111 is kept constant during the coefficient adjustment,
ie., W+ = wy+¢,. Keeping the =ill constant for a monitoring site
ensures that the variance of a calculated load is only dependent on
the number and seguence cof missing data points.

Once the coefficients are determined for the theoretical semi-
variogram, proceed to step (3) to calculate the variance of the
estimated load. An egquation similar to Equation (17) is used,
except that the gsubscript k (indicating known peoints) is replaced
by 1 {(indicating missing pointz) and the egquation is multiplied by

a factor equal to the squared dizscharge volume:

var(l,) =2v? [w, y{A, )+wW, y(A, )-w W, y(A +A )1 (19)

i 1,i 2,1

If the time interwval, t is one day, then the above wvariance is

17t
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the variance of the calculated daily lead. The variance of the

calculated vearly load then is expanded as:

var{lL) = S:Var(li) + ii‘vivj [{w+c) -y (A, g1 L 7 (20)
i=1 i=1 j=1 '

where n is the number of missing concentrations. The upper bound
of the variance in Equation (20) iz the i1l w+e, and A, ; is the
time difference in days between day 1 and day j. The second term
on the right-hand side of Eguation (20} is the sum of the
covariances between estimated concentrations, i.e.,
Cov(C;,Cyl=(w+c) -y (A ;;). Eguations (15) through (20) define a PLI

model that is denoted as the Single Variance Linear Interpolation

{5VLI}) model.

RESULTS AND DISCUSSTON

The models discussed above were applied to a sample data set
from water control structures located near the southern end of
Florida over a 1l3i-year period (1978-1930). Characteristics of this
data set are described in Table I. The data set has complete daily
discharge (no missing data) but incomplete daily concentration
data. In the SVLR model, a simple equation (C = a, + a,V) usging
daily discharge as the independent wvariable, was used to estimate
missing daily concentrations. In the SVLI model, the exponential
function in Equation {(10) was used as the semi-variogram.

Yearly loads were also calculated using each model. To

compare the locad variances, we also defined and calculated the
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following dimensionless coefficient of load variation,

D
1
b1l -

JvariLi (21}

where Var(L) i=2 the load wvariance and L is the calculated load.
Reasults are pletted in Figures 1, 2 and 3.

Differences among the loads calculated by these models are
small in magnitude (Figure 1}. In 1982, many high concentration
values were recorded on low discharge days. Therefore, the SVAM
model gave a 60% higher estimate than the other three models in
that vear.

The & values from different models are significantly different
(Figure 2Z). G wvalues from the SVAM and SVLE models were much lower
than those from the S5VFM and S5VLI models. The G values of a single
model alseo varied annually. One reason for this variation is that
the uncertainty of a model is data dependent, i.e., differences in
data values and in the number of missing data will result in
different G values for different years. Another reason is that the
uncertainties of missing concentrations propagate differently in
different models into the final load variance, Var{L). The SVLI
and SVLR models tend to magnify the wvariance of missing data
estimates, while the wvariance of SVAM and 53VFM models depends more
on the wvariation of collected data.

The G wvalues from the different models showed a similar
pattern of change over time (Figure 2). Thisz was hecause all of
these medels used the same data, =o that the number of data

available in each vyear was the same. We expect a good load model
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to be data-driven.

Te understand how different models behave, a numeric index is
needed to compare the uncertainties attributable to each model.
Uncertainty of missing data estimates can be represented by the
coefficient of wariation (CV) of medel predictions, which is

Jdefined azs follows:

1|1 2
cV = —,| = C.-C {22)
ch Ki);( 5.

where C; iz the observed concentrations, C, . is the model predicted
value of C,, ¢, is the arithmetic mean of C;, and K is the total
number of observationz. The error magnification due to the
multiplication by flow-volume can be specified as the difference

between G and CV. For this purpose, the DG coefficient is defined

as followz to indicate model behavior:
1
DG = — G, - 2 (23)
Mg (G,-cvy)

where M iz the number of years (13 in this study). Calculated CV
values for the three models are shown in Fig. 3. Comparing Figures
2 and 3, it is clear that a =small wvariance in the missing data
estimates does not necessarily correspond to a small variance in
the calculated load. Variance of leoad calculations depends upon
model-error and multiplication pattern. DG, as an overall model
performance indicator, is shown in Table 2.

The SVLI gives the smallest DG wvalue, which means that the

16



variance of the load by this model waries the least from the
variance attributable to data source, Therefore, PLI is the
preferraed approach. DG iz a useful index for model comparisons,
and 15 perhaps also applicable to two-variance cases when both flow
and concentration measurements contain missing data.

In the SVLI model, interpolation weights are determined prior
ko the calculation of the load wvariances. Other linear
interpolation methods with fixed weights have been used by
invesztigators (Scheider et al., 1978). For the purpose of
comparisgon, the following three commonly used fixed-weight linear
interpolation methods were alsc investigated.

a) The mid-point method uses obzerved data ag the midpoints of
corresponding intervals to interpolate missing concentrations
(equivalent to assigning W, = 1 and w, = 0) .

k) The equal-weights method interpolates missing
concentrations by the arithmetic mean of the two adjacent known
points (eguivalent to assigning W, = W, = 0.5).

c) The three-points method interpolates missing concentrations
by the three nearest neighboring points with fixed weights W, =
0.25, W, = 0.5, and W, = 0.25.

Uzing the =same data set, it was found that these three fixed-
welght linear interpolation methods gave very similar yearly leoad
estimates to these provided by the SVLI model, but had higher G
and DG valuez. DG valued for the three-points method was 0.0582,

for the mid-point method was 0.169,



SUMMARY AND CONCLUSTONS

In this paper, we propose a model to guantify the variance in
piece-wise linear interpolaticn (PLI) and apply the model to
nutrient load caleulations. This model provides a methed for
regulatory agencies that use PLI to compare their results with
those from cther models. The PLI uncertainty analysis procedure
consists of the following steps:

a. Estimate missing data using PLI with Equation (6). The
load can be determined hefore the variance analysis is conducted.

b. Select a theoretical semi-variogram based on properties of
the data and calibrate it for each year by croas-validation until
the convergence reguirement in Equation (18} is met. This
convergence requirement ensures that the variances derived from the
model are comparable to those obtained from other models.

¢. Compute variance of the calculated yearly 1load using
eqgquation (20),

By comparing the SYVLI model with other medels, we concluded:

1. Load estimates derived by applying different models to the
sample data set were not significantly different.

2. Uncertaintiegs in missing data estimations were dependent
upon the type of model uzed and data properties.

3. The dimensionless coefficient of load wvariation, G, in
Equation (21) was a convenient way to compare the uncertainties in
loading estimations among different models, especially when both
discharge and concentration measurements centained missing values.

This ccefficient algo provides information on error magnification,

18



resulting from error propagation within a particular model.

4, The DG coefficient defined in Egquation (23) can be used to
gelect a numerically robust model. A smaller DG suggests less
magnification of the uncertainty in the missing data estimation.
Conszequently, a perturbation in data will not significantly change
the loading estimation result of a model if ite DG value is small,
The SVLI model gave the =zmallest DG value and thus was the most
desirable model for the data =set that was used in this study.

5. Other fixed-weight linear interpolation models were
comparable to the SVLI model in terms of calculated leads and load
variances. The three-points model, in particular, provided
*elatively smoother transitions from point to point.

6. Since the models are data dependent, there is no guarantee
that the best model for one data set will also be best for another
set., Model selection depends on how well the model describes the
inherent properties of the data.

One may argus that since calculated loads from different
models are often very close to each other, it doesn't matbter which
model iz used. Statistically this is true. However, in the
context of a regulatory program, specific numeric limits are often
set as loading threshclds. In such cases, knowing the uncertainty
or confidence interval of an estimated lcad may be critical to
regulatory agencies in their determination of whether a loading

estimate is, or is not, in compliance with establizhed c¢riteria.
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APPENDIX II. NOTATION

Cowv

v

DG

dt

The following symbols are used in this paper.
concentration

coafficient of semi-variogram

yearly mean concentration

co-variancs

coefficient of variation

coaefficient of deviation of G from CV

time increment

Coefficient of load variation, dimenzionless
total number of known data points

yvearly load

daily load

mean daily load

total number of days of calculation period
total number of missing data points
discharge

sum of scguared errors

time

discharge volums

variance

mean dally discharge veolume

weight of interpolating point

predicting or known point in linear interpolation
predicted value of a variable by linear regression method

predicted value of a missing data by linear interpolation
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2. predicted value of a known data point

[.] an estimated wvalus, inﬁolving variance

o coefficient of Zemi-variogram

A difference in sampling dates of two samples, normally in days
¥ semi-variogram

o variance

o coefficient of semi-variogram
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Figure 1.
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Figure 3.

A Descrintion of Data Used in the Example.

Model Performance Indicator, DG.

Loads from the four load caleculation models.
G values from the four load caleculation models.

OV values from the four leoad calculation models.
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Table 2. Model Performance Indicator, DG.

—_——— — — . ——————————————— ]

Model : DG

SVLI: szingle-variable Linear Interpclation 0.040
SVLE: single-varibale Linear Regression 0.189
SVFM: single-variable Flow-weighted Mean 0.238
SVAM: single-~variable Arjﬂnetic Mean 0.328
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